

17 giugno 2024: la Nature Restoration Law è definitivamente approvata!

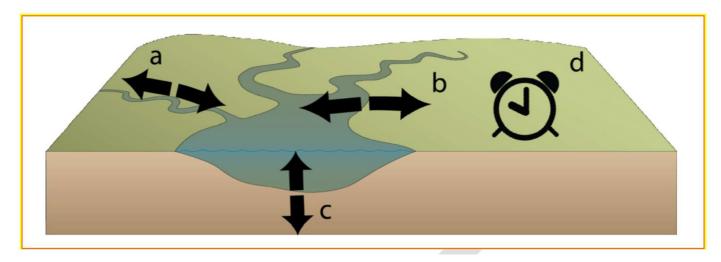
el-Hamas war US election Newsletters Podcasts Poll of Polls Policy news Events

NEWS > SUSTAINABILITY

Rogue Austrian minister burns bridges to save EU nature law

Cue the lawsuits, potential fines, dueling allegations — and, for Leonore Gewessler, a great campaign ad.

SHARE


POURCOPRO Free article usually reserved for subscribers

Environment Minister Leonore Gewessler arrived in Luxembourg ready for a fight. I John Thys/AFP via Getty Images

NRL e corsi d'acqua: ripristinare la CONNETTIVITÀ fluviale

- a) longitudinale
- b) laterale
- c) verticale
- d) temporale

Vannote RL, Minshall GW, Cummins K, Sedell JR, Cushing CE (1980). The river continuum concept. Can J Fish Aquat Sci 37:130-137

Amoros C, Roux AL (1988). Interaction between water bodies within the floodplain of large rivers: function and development of **connectivity**. Muunstersche Geographische Arbeiten 29:125-130

CL Molte strategie e norme UE prevedrebbero il ripristino della connettività

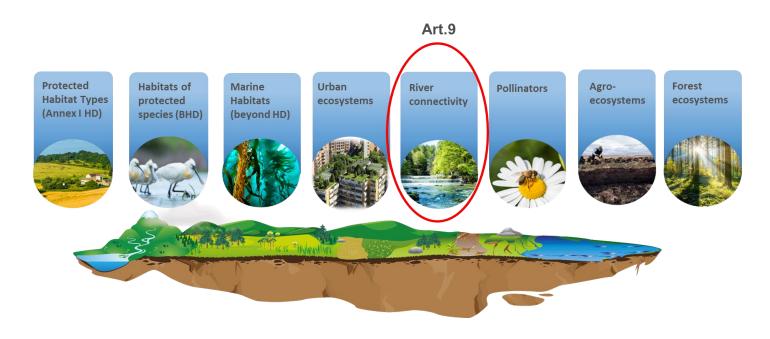
Habitats
Directive (1992)

Eel Regulation (2007)

Pan-European action plan for sturgeon (2018)

Restoration Law (2024)

Water Framework Directive (2000)


Biodiversity Strategy for 2030 (2020)

Il ripristino e il mantenimento della connettività fluviale

Nature Restoration Law- Specific restoration targets

Nature Restoration Law – connettività fluviale – Art. 9

Identificare e rimuovere gli ostacoli artificiali che limitano la connettività dei corsi d'acqua per contribuire agli obiettivi:

- → per habitat ed ecosistemi fluviali
- → di ripristinare almeno 25 000 km di free-flowing rivers in UE entro il 2030

Elementi principali dell'Art. 9

- 1. mappatura degli ostacoli artificiali
- 2. identificazione degli ostacoli da rimuovere, sulla base di...
- 3. Piano Nazionale di Ripristino della Natura (interventi + cronoprogramma)
- 4. altre misure a complemento della rimozione
- 5. mantenimento della connettività + pianure alluvionali ripristinate

Linee guida CE sulla rimozione di barriere lungo i fiumi (2021)

Strategia sulla biodiversità per il 2030 Eliminazione delle barriere per il ripristino dei fiumi

Vuoteen 2030 ulottuva biodiversiteettistrategia Esteiden poistaminen jokien ennallistamiseksi

Criteria for identifying free-flowing river stretches for the EU Biodiversity Strategy for 2030

Van De Bund, W., Mushimann, H., Ofenbosck, G., Schmitt, K., Schultze, A., Bussettini, M., Peruzzi, C., Bartsisticz, P., Belka, K., Calleja, B., Mardaleno, G., Bartkova, T., Goltara, A., Beckendorfer, W., Christiansen, T., Bastino, V.

2024

Pubblicato nel giugno 2024 (dopo una fase di consultazione a fine 2023-inizio 2024)

Partecipanti al Free Flowing Rivers Core Group di ECOSTAT:

Wouter Van De Bund (JRC)

Andrea Goltara (Wetlands International Europe – CIRF)

Martina Bussettini & Cosimo Peruzzi (ISPRA, Italy)

Helena Mühlmann & Gisela Ofenböck (Federal Ministry of Agriculture, Forestry, Regions and Water Management, Austria)

Sophia Vauclin (Ministry for the Ecological Transition and the Demographic Challenge and Territorial Cohesion, France)

Kathrin Schmitt (Federal Ministry for Digital and Transport, Germany)

Ann-Kristin Schultze (Ministry of the Environment, Nature and Transport of the State of North Rhine-Westphalia, Germany)

Piotr Parasiewicz & Kamila Belka (National Inland Fisheries Research Institute, Poland)

Belen Calleja Arriero & Gonzalo Magdaleno Payan (Ministry for the Ecological Transition & the Demographic Challenge,

Spain)

Walter Reckendorfer (Verbund)

Trine Christiansen (European Environment Agency)

Valentina Bastino (DG Environment, European Commission)

Di che tipo di metodo sui FFR abbiamo bisogno?

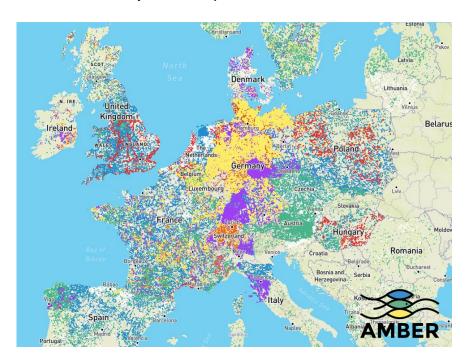
NON di un'etichetta per il meglio del meglio/i fiumi più selvaggi

www.nature.org

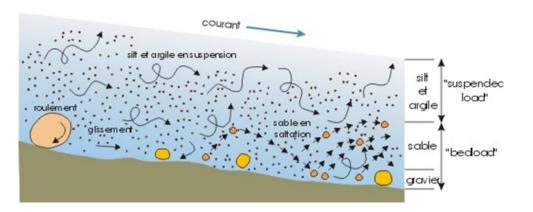
Di che tipo di metodo sui FFR abbiamo bisogno?

- Applicabile con relativa facilità e rapidità in TUTTI gli Stati membri UE
- Facile da capire, per ottenere il supporto di gestori fluviali e stakeholder
- Sufficientemente ambizioso per andare oltre i requisiti standard della WFD per lo stato buono
- Non è uno strumento per affrontare tutti i fattori di pressione sui corpi idrici (solo la connettività)
- Abbastanza realistico da essere raggiungibile senza dover trasferire tutta la popolazione europea dalle pianure alluvionali...

L'OBIETTIVO PRINCIPALE È PROMUOVERE PIÙ RINATURAZIONE DEI CORSI D'ACQUA!

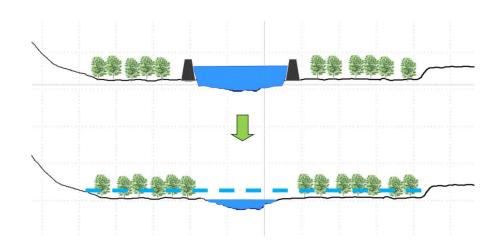


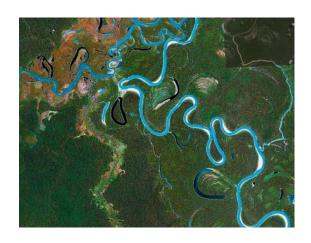
Di che tipo di metodo sui FFR abbiamo bisogno?


 Applicabile sulla base dei dati attualmente disponibili o che possono essere facilmente ottenuti (MA l'integrazione delle opere di difesa laterali (argini, difese spondali) nei database esistenti è sicuramente necessaria)

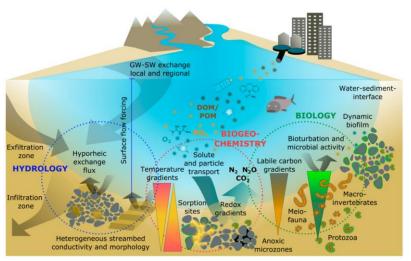
- Numero totale di barriere stimato a 1 milione (escluse quelle laterali!)
- Quasi un ostacolo (trasversale) ogni 2 km
- Nessuno Stato membro dispone attualmente di database nazionali affidabili sulle barriere laterali.

Le principali funzioni/componenti della connettività considerate


Longitudinale - sedimenti

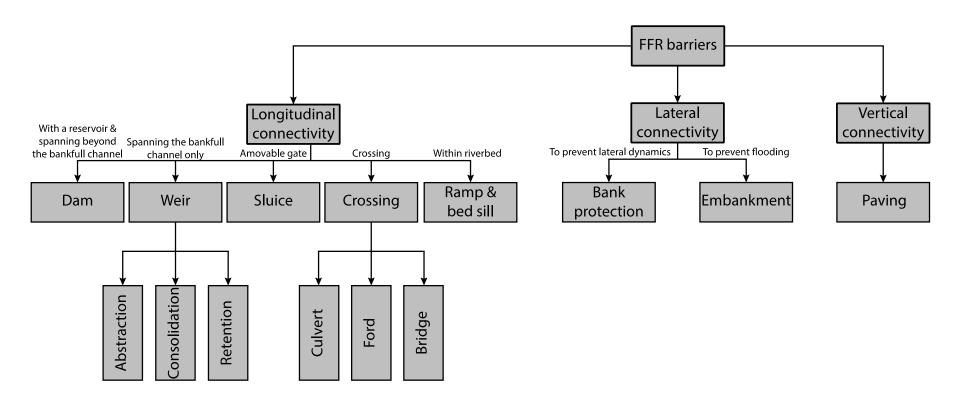

Longitudinale – fauna ittica (valle-monte e monte-valle)

Le principali funzioni/componenti della connettività considerate


Laterale - inondazione

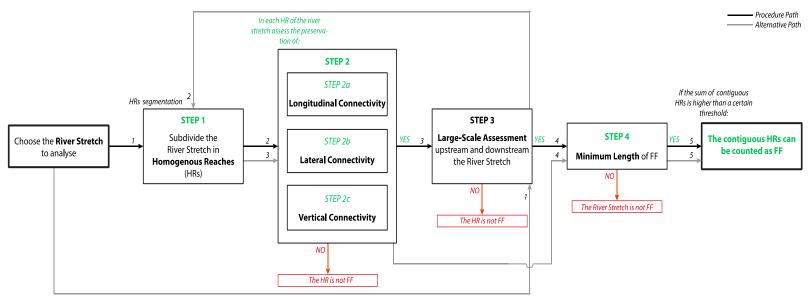
Laterale – erosione/mobilità degli alvei

Le principali funzioni/componenti della connettività considerate



Lewandowski et al., 2019

Verticale (interazione tra deflussi superficiali e sotterranei)



Tipologie di barriere artificiali da considerare

Passi chiave della procedura

Step 1:

Individuare tratti fluviali omogenei all'interno di un segmento di corso d'acqua

Step 2:

Valutazione di ogni tratto omogeneo

- 2 a) longitudinale
- 2 b) laterale
- 2 c) verticale

Step 3:

Valutazione a larga scala

→ Pressioni a monte e a valle del tratto omogeneo

Step 4:

Valutazione del rispetto della lunghezza minima per essere identificato come FFR

Obiettivo principale: identificare gli interventi necessari a ripristinare tratti "free-flowing"!

Es: rimozione di sbarramenti trasversali

Diga Retuerta, fiume Aravalle (Bacino del Duero, Spagna), 2013

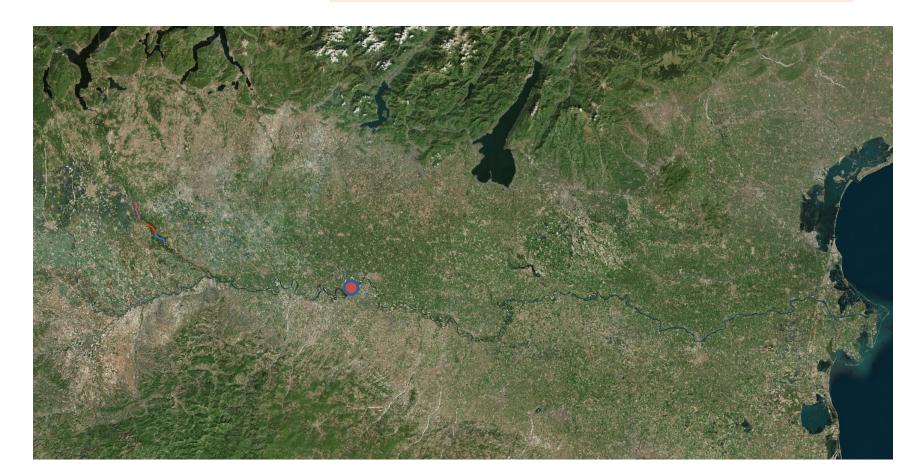
Es: rimozione/arretramento di DIFESE SPONDALI

Riqualificazione del fiume Sangro tra Villa Scontrone e Castel di Sangro, 2015

E il Ticino?

Ticino: Valutazione a larga scala - monte

A monte: 3 sbarramenti principali, molto vicini al lago che rappresenta una discontinuità naturale, quindi l'effetto sul trasporto solido è meno significativo rispetto ad altri bacini fluviali

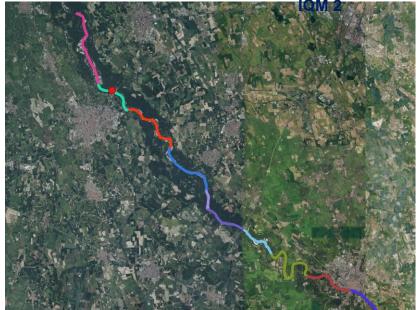


Tipo di ostacolo specifico: sbarramento temporaneo in materiale sciolto per la derivazione idrica

3.b – Ticino: Valutazione a larga scala - valle

A valle: 1 sbarramento (Isola Serafini) tra il Ticino e il Mare Adriatico, dotato di un passaggio per pesci di recente costruzione

Tratto inferiore del Ticino: suddivisione in tratti omogenei sulla base della classificazione IQM



	L (m)	w (m)
IQM1	7148	547
IQM2	3859	342
IQM3	6266	381
IQM4	5752	276
IQM5	1718	301
IQM6	3710	184
IQM7	3803	348
IQM8	7991	175
IQM9	4597	161
IQM10	8111	183
Ampiezza media dell'alveo		200
attivo		290

Ticino: Connettività longitudinale

- Pesci: ostacolo parziale/temporaneo su almeno alcune specie -> NON FFR
- Trasporto solido al fondo: impatto limitato (principalmente sul regime di deflusso, non sull'equilibrio a lungo termine)
- Deflusso ecologico ?

Ticino: Connettività laterale

Ticino: Connettività laterale

Difese spondali discontinue + argini nel tratto inferiore

Ticino: Connettività laterale

Tratto IQM 4

Ampiezza media alveo attivo: 276 m

Lunghezza tot tratto (L): 5752 m

Tipo morfologico: canali multipli (wandering)

Corridoio di valutazione: 276 m da ogni sponda

L totale ostacoli laterali lungo le sponde: 1414 m

= 0.25 L

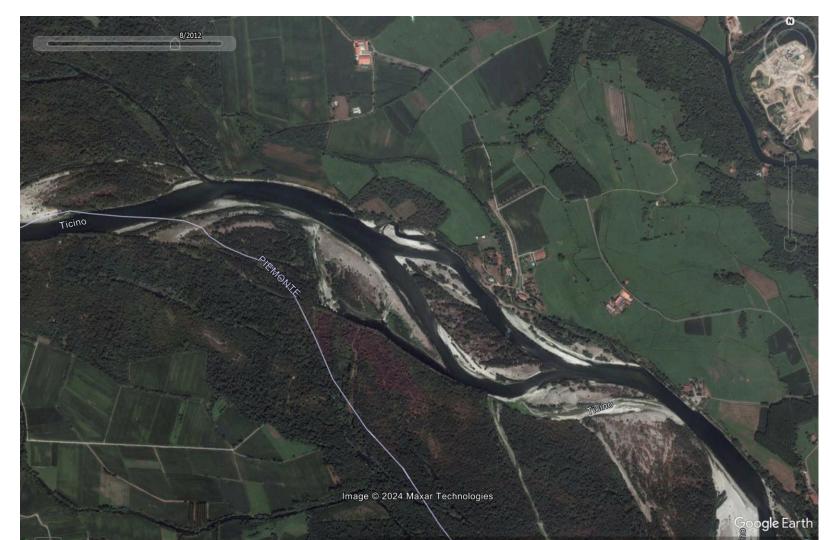
> 0.2 L NOT OK

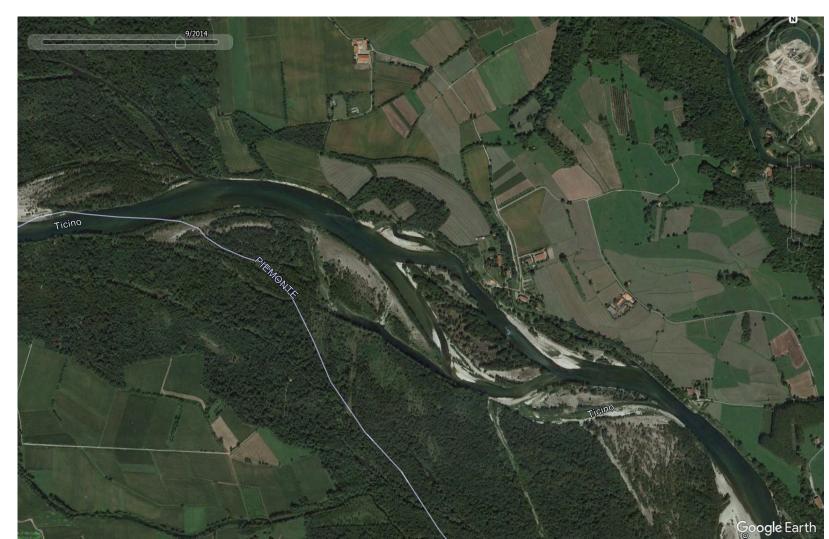
L totale ostacoli laterali : 1744 m = 0.30 L

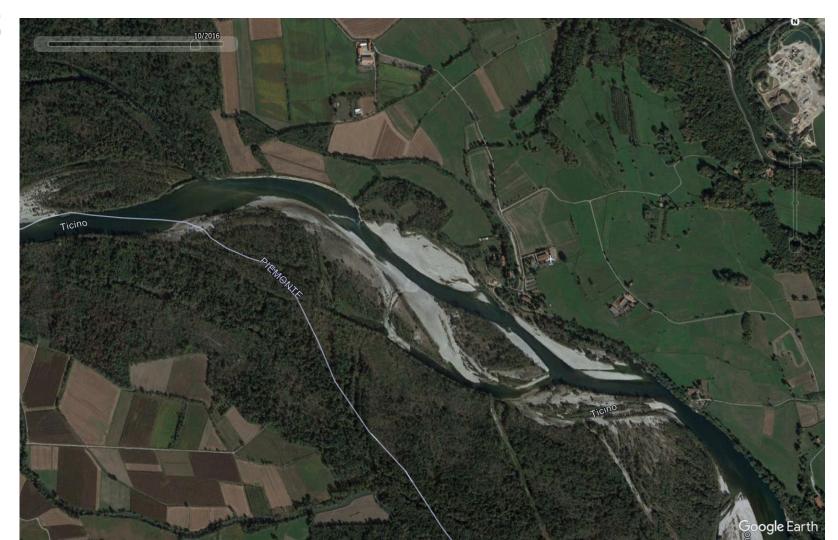
< 0.4 L OK

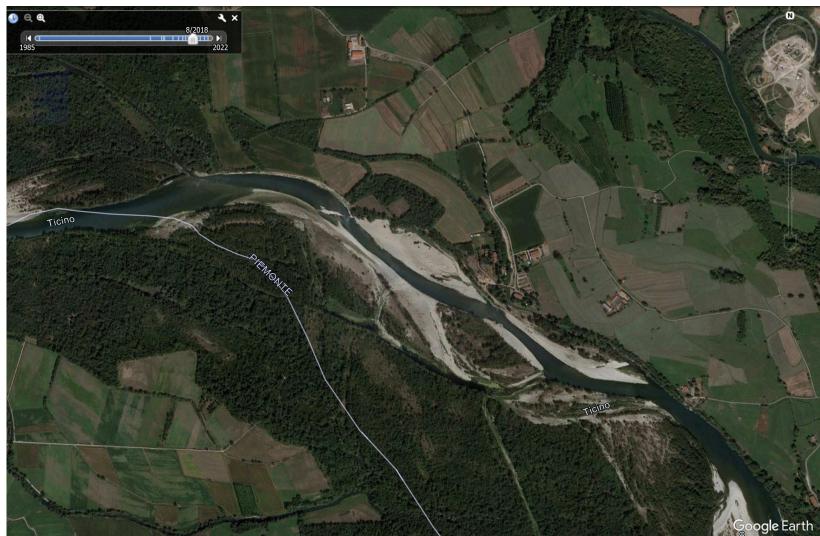
L'importanza dell'erosione laterale

Volo GAI 1954

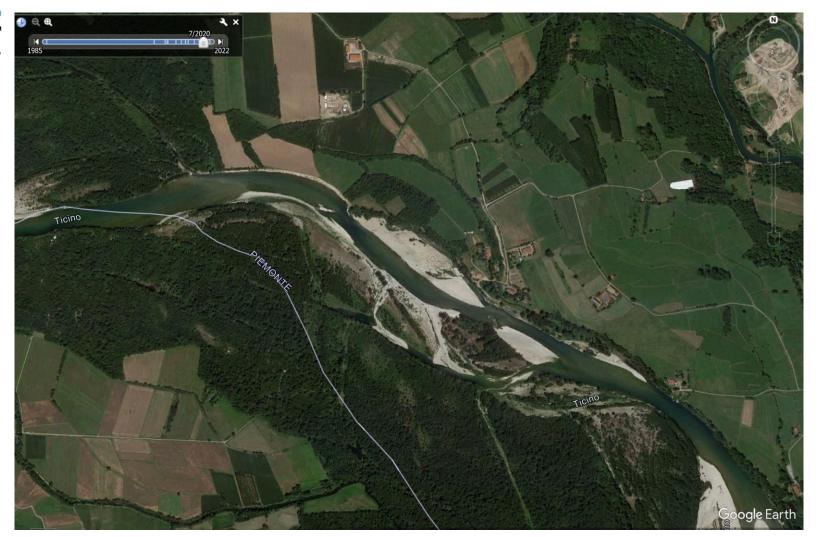












Azioni coerenti con la NRL sul Ticino: ripristinare la mobilità laterale in alcuni tratti dove è stata interrotta

NRL strumento chiave per l'adattamento ai cambiamenti climatici

EN L series

2024/1991

29.7.2024

REGULATION (EU) 2024/1991 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 24 June 2024

on nature restoration and amending Regulation (EU) 2022/869

(Text with EEA relevance)

THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty on the Functioning of the European Union, and in particular Article 192(1) thereof,

Having regard to the proposal from the European Commission,

After transmission of the draft legislative act to the national parliaments,

Having regard to the opinion of the European Economic and Social Committee (1),

Having regard to the opinion of the Committee of the Regions (2),

Acting in accordance with the ordinary legislative procedure (3),

Whereas:

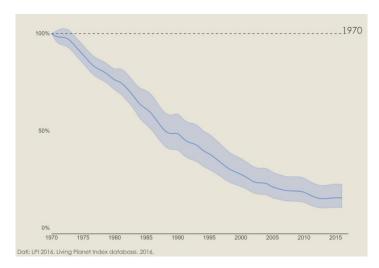
It is necessary to lay down rules at Union level on the restoration of ecosystems to ensure the recovery of biodiverse and resilient nature across the Union territory. Restoring ecosystems also contributes to the Union's climate change mitigation and climate change adaptation objectives.

Clima: Approvato il Piano nazionale di adattamento ai cambiamenti climatici

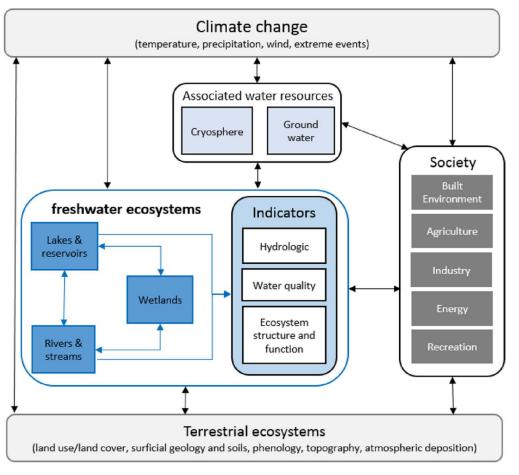
Il Ministro dell'ambiente e della sicurezza energetica, con decreto n. 434 del 21 dicembre 2023, ha approvato il Piano nazionale di adattamento ai cambiamenti climatici. Un passo importante per la pianificazione e l'attuazione di azioni di adattamento ai cambiamenti climatici nel nostro Paese.

PNACC_DOCUMENTO_DI_PIANO.pdf

PNACC_I_Allegato_Metodologie_Strategie_Piani_Regionali.pdf

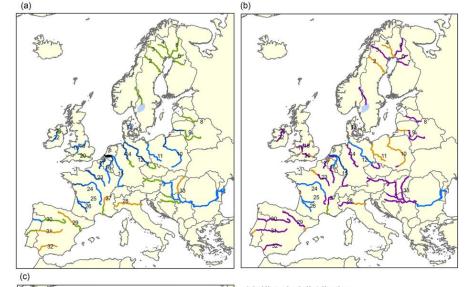

PNACC_II_Allegato_Metodologie_Strategie_Piani_Locali.pdf

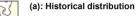
PNACC_III_Allegato_Impatti_e_vulnerabilita.pdf


PNACC_IV_Allegato_Database Azioni.xlsx

Gli ecosistemi fluviali che subiscono gli effetti del CC sono già estremamente impattati

https://livingplanetindex.org


(Rose et al, 2023)



Connettività Longitudinale per la fauna ittica (valle-monte e monte-valle)

Declino del numero di specie ittiche nei bacini fluviali europei connessa a riduzione connettività longitudinale

(b): Current distribution

__ 0

- 1:

— 3; 4

--- 5;

- 7: 8

— 7; 8

...

(c) River accessibility

Free flowing to sea
Accessible by fish passage

- Not accessible due to one barrier

Not accessible due to two or more barriers

van Puijenbroek, PJTM, Buijse, AD, Kraak, MHS, Verdonschot, PFM. Species and river specific effects of river fragmentation on European anadromous fish species. *River Res Applic*. 2019; 35: 68–77.

https://doi.org/10.1002/rra.3386

Estensione (spaziale/temporale) dei tratti a deflusso temporaneo

Rimuovere ostacoli trasversali anche per ripristinare la connessione con tratti a deflusso permanente

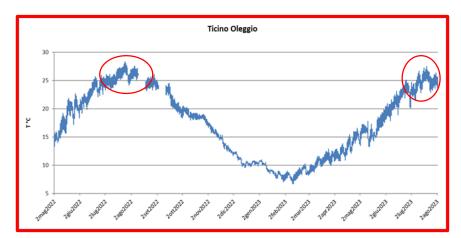
Progetto LIFE GrayMarble, Dora Baltea, 2023

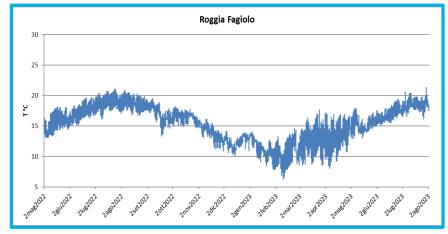
Fiume Yzeron, 2022

Aumento della temperatura dell'acqua

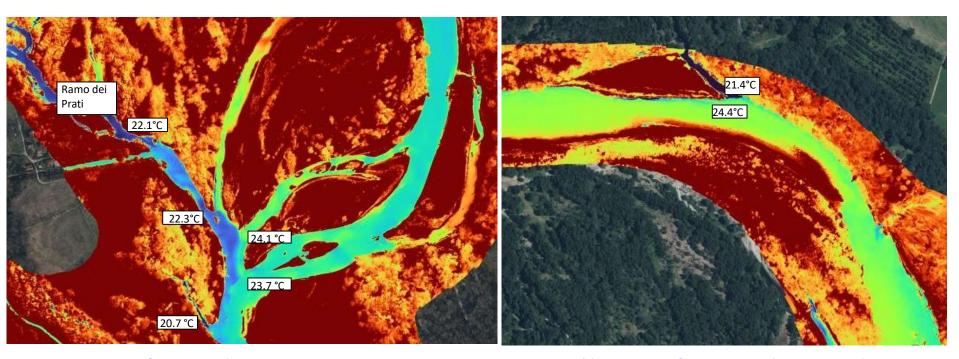
Rising water temperature in rivers: Ecological impacts and future resilience

```
Matthew F. Johnson 10 | Lindsey K. Albertson 20 | Adam C. Algar 3 | Stephen J. Dugdale 1 | Patrick Edwards 4 | Judy England 5 | Christopher Gibbins 6 | So Kazama 7 | Daisuke Komori 8 | Andrew D. C. MacColl 9 | Eric A. Scholl 10 | Robert L. Wilby 11 | Fabio de Oliveira Roque 12,13 | Paul J. Wood 11
```



Water Research


Volume 247, 1 December 2023, 120703

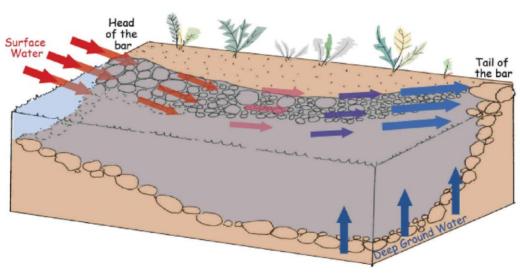
Empirical evidence of climate change and urbanization impacts on warming stream temperatures


<u>Vaughn Grey ^{a b c} ^A ⊠, Kate Smith-Miles ^b, Tim D. Fletcher ^a, Belinda E. Hatt ^{a c}, Rhys A. Coleman ^{a c}</u>

Ripristinare/mantenere connessione con i rifugi termici

Ticino - Vigevano, foce Ramo dei Prati

Ticino - Abbiategrasso, foce Ramo Delizia - Regendone



Diversità morfologica e connettività verticale

Mitigazione del riscaldamento dell'acqua

Dole-Olivier et al., 2018

Ripristinare la connettività longitudinale per garantire la fruibilità dei corsi d'acqua

Estremizzazione fenomeni piovosi di elevata intensità

Rapporto della Commissione per l'analisi degli eventi meteorologici estremi del mese di maggio 2023

Stime del tempo di ritorno dei valori massimi giornalieri e in 2 giorni consecutivi delle altezze di pioggia medie areali dell'evento del maggio 2023.

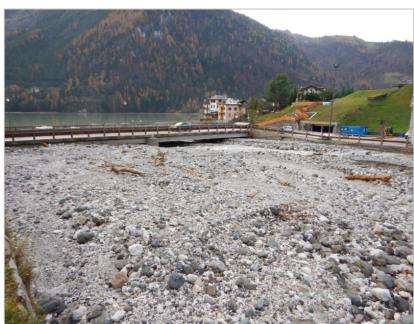
Codice	Nome	Area (Kmq)	T Pio1g [anni]	T Pio 2gg [anni]
B005	Idice (Reno) a Castenaso	393.1	334	102
B098	Sillaro a Sesto Imolese	247.3	78	65
B058	Santerno a Imola	416.2	151	515
B028	Senio (Reno) a Castel Bolognese	262.5	>> 500	>>500
B083	Lamone a Reda	520.2	>> 500	>>500
B080	Montone a Ponte Vico	543.4	>> 500	>>500
B044	Ronco a Coccolia	549.6	340	427

Stime del tempo di ritorno dei valori massimi giornalieri e in 2 giorni consecutivi delle altezze di pioggia medie areali dell'evento del maggio 2023.

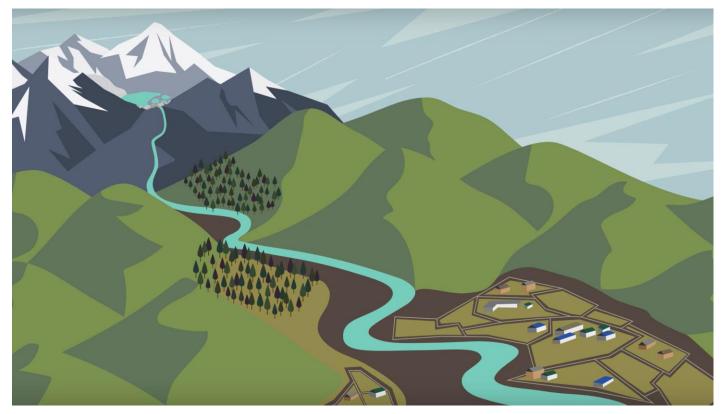
Considerando il 2023

Codice	Nome	Area (Kmq)	T Pio1g [anni]	T Pio 2gg [anni]
B005	Idice (Reno) a Castenaso	393.1	166	75
B098	Sillaro a Sesto Imolese	247.3	61	54
B058	Santerno a Imola	416.2	100	215
B028	Senio (Reno) a Castel Bolognese	262.5	368	406
B083	Lamone a Reda	520.2	395	339
B080	Montone a Ponte Vico	543.4	413	302
B044	Ronco a Coccolia	549.6	166	191

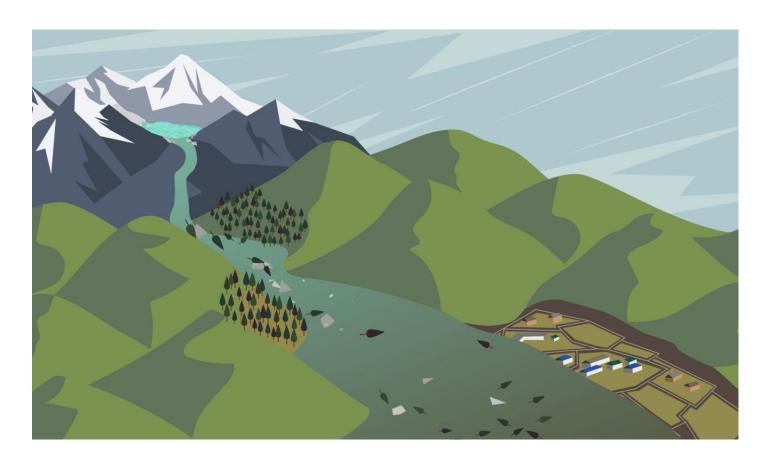
Estremizzazione fenomeni piovosi di elevata intensità


Image: Michael Probst/AP Photo/picture alliance

Alluvioni Ahr 2021: Tr stimato (sui dati pre-evento): 10000 anni! (Gianolio, 2021)


Fenomeni estremi "nuovi"

Tempesta VAIA – ottobre 2018



www.icimod.org/mountain/glacial-lake-outburst-flood

Global and Planetary Change

Volume 144, September 2016, Pages 1-16

Invited research article

A global assessment of the societal impacts of glacier outburst floods

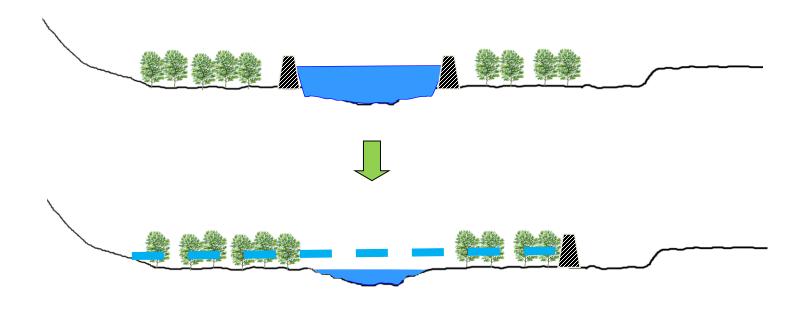
Jonathan L. Carrivick $^{a} \stackrel{\wedge}{\sim} \boxtimes$, Fiona S. Tweed b

Show more V

Necessità di restituire spazio ai corsi d'acqua!

Bacino del Cordevole -Tempesta VAIA – ottobre 2018

In molti casi lo spazio che restituiremo sarà comunque solo una piccola parte di quello che storicamente è stato tolto ai corsi d'acqua



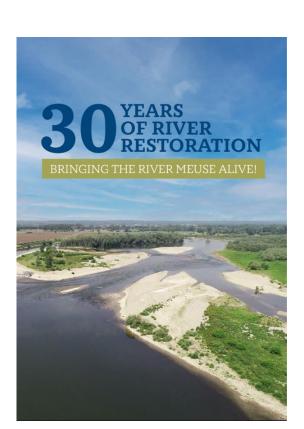
Fiume Reno (Emilia-Romagna) nel 1954 e nel 2022 (Volo IGM GAI 1954; Bing Maps) www.freeflowingrivers.eu

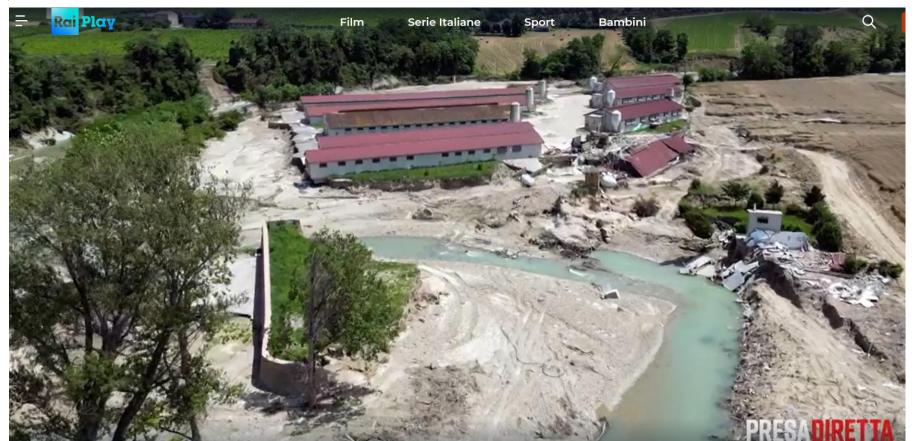
Ripristino della connettività idraulica con la piana tramite arretramento/rimozione di argini

Riconnettere le pianure inondabili

Es. abbassamento piana e allargamento alveo Mosa

Collaborazione Belgio - Olanda, 60 km di intervento, studi/ pianificazione/ progettazione 1990-2008




Ripristinare connettività laterale (esondazioni) ma anche temporale (DE) per ripristinare la ricarica delle falde

Interventi di delocalizzazione

Fiume Rabbi – giugno 2023

Alluvione Emilia Romagna 2023: Approvato il Piano Speciale Preliminare e le misure di Salvaguardia

da respsvil | Mag 9, 2024 | Argini, Acque, news, Piano Gestione Alluvioni, slider

Il piano speciale si applica alle aree colpite dagli eventi calamitosi e prevede la definizione delle linee di indirizzo per la mitigazione del rischio idro-geologico e l'individuazione degli interventi strutturali e non strutturali sulle situazioni di dissesto, con priorità per le situazioni che costituiscono pericolo per centri abitati ed infrastrutture, con particolare riguardo a quelli integrati con la tutela ed il recupero degli ecosistemi e della biodiversità e alla delocalizzazione di beni in aree a elevata pericolosità.

In relazione alla straordinarietà degli eventi, è, fin da subito, emersa la necessità di pianificare strategie innovative e maggiormente sostenibili in epoca di cambiamento climatico, considerato anche il fatto che le attuali arginature non sono più significativamente incrementabili in quota. Tali strategie devono essere finalizzate a dare più spazio ai fiumi, potenziando la laminazione delle piene a monte, arretrando le attuali arginature e rendendole resistenti a fenomeni di tracimazione controllata. Strategie innovative sono da

Riapertura corsi d'acqua tombati/tombinati

I FIUMI TOMBATI

Non mettiamoci una pietra sopra!

In Italia migliaia di km di corsi d'acqua tombati

Alluvione Marche settembre 2022: torrente Burano a Cantiano

Stombamento con ripristino di una sufficiente funzionalità fluviale

Deculverting fiume Ondaine, (St-Etienne, Francia), nell'ambito di un progetto di riqualificazione urbana in un'exarea industriale

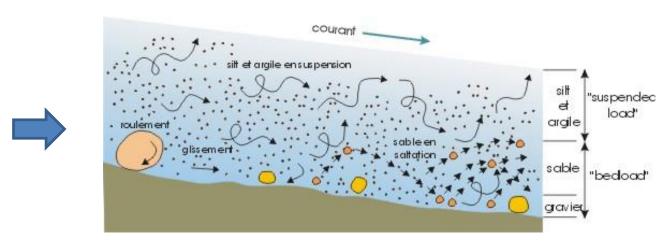
www.lacompagniedesforestiers.com

Stombamento del fiume Cheonggyecheon (pronuncia "chung-gye-chun") a Seoul, Corea del Sud (circa 23 milioni di abitanti)

Tombato negli anni '70 per 6 km, con una autostrada a 10 corsie successivamente coperta da una strada sopraelevata a 4 corsie

Elemento chiave della campagna elettorale di Lee Myungbak è stata la riapertura del fiume; nel 2002 è stato eletto sindaco di Seoul, nel 2008 presidente della Corea del Sud. Nel 2005 il fiume è stato stombato per una lunghezza di 730 m realizzando un corridoio fluviale di 400 ha

Aumento erosione costiera (già in atto a causa di deficit di sedimenti)



Arretramento di oltre 600 m della costa della Puglia presso la foce dell'Ofanto tra il 1954 e nel 2022. (Volo IGMI GAI 1954; Bing Maps) Da: www.freeflowingrivers.eu

Il deficit di sedimenti determina anche abbassamento delle falde acquifere, risalita del cuneo salino, canalizzazione degli alvei e aumento del rischio di alluvioni a valle...

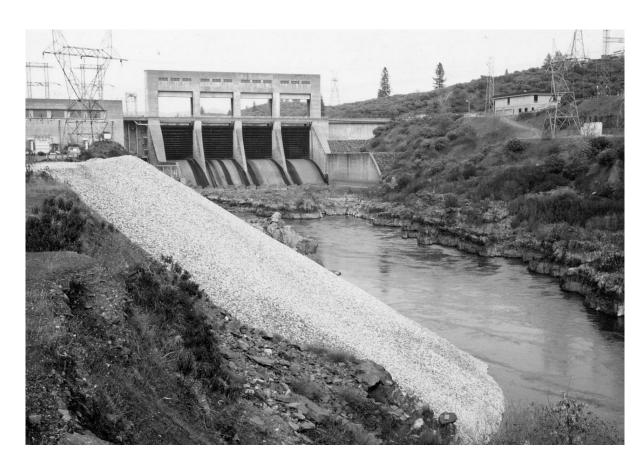
Ripristino connettività longitudinale trasporto solido

per alcune tipologie di intervento: sinergia con ripristino connettività per la fauna ittica

Sostituzione di briglie di trattenimento chiuse con briglie filtranti

Torrente Talvera a monte della città di Bolzano - Rimozione di due briglie di trattenimento e realizzazione di una briglia filtrante

Rimozione/arretramento di difese spondali

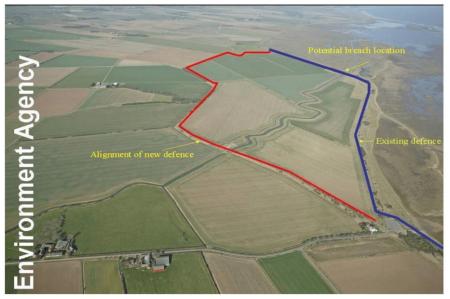

Riqualificazione del fiume Sangro tra Villa Scontrone e Castel di Sangro, 2015

Reimmissione sedimenti / gestione invasi

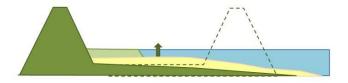
Fare in modo che le procedure di gestione degli invasi diventino strumenti di riqualificazione morfologica (a maggior ragione al rinnovo della concessione)

Nuovo Decreto 12 ottobre 2022, n. 205 (sostituisce D.M. 30 giugno 2004) sulla gestione degli invasi

Obbligo di programmi di gestione sedimenti a scala di bacino


Collegato Ambientale – 2015 -> TUA

art.117 comma 2-quater: obbligo di pianificare la gestione dei sedimenti a livello di bacino idrografico, con l'obiettivo esplicito di migliorare lo stato morfologico ed ecologico dei corsi d'acqua e di ridurre il rischio di alluvioni, dando priorità, ovunque possibile, alla riduzione dell'alterazione dell'equilibrio geomorfologico e della disconnessione degli alvei con le pianure inondabili, evitando un'ulteriore artificializzazione dei corridoi fluviali.



Arretramento difese costiere

www.essexwt.org.uk

Morgane Jolivet: REST-COAST

QUADRO DELLE MISURE E RISORSE (MILIARDI DI EURO):

M2C4 - TUTELA DEL TERRITORIO E DELLA RISORSA IDRICA

Ambiti di intervento/Misure

15,06

MId Totale

Rafforzare la capacità previsionale degli effetti del cambiamento climatico	0,50
Investimento 1.1: Realizzazione di un sistema avanzato ed integrato di monitoraggio e previsione	0,50
Prevenire e contrastare gli effetti dei cambiamenti climatici sui fenomeni di dissesto idrogeologico e sulla vulnerabilità del territorio	8,49
Investimento 2.1: Misure per la gestione del rischio di alluvione e per la riduzione del rischio idrogeologico	2,49

Totale

6.00

1.69

0.36

0.40

2.00

0.90

0.88

0.60

l'efficienza energetica dei Comuni
Rforma 2.1: Semplificazione e accelerazione delle procedure per l'attuazione
degli interventi contro il dissesto idrogeologico
3. Salvaguardare la qualità dell'aria e la biodiversità del territorio attraverso la

Investimento 2.2: Interventi per la resilienza, la valorizzazione del territorio e

tutela delle aree verdi, del suolo e delle aree marine

Investimento 3.1: Tutela e valorizzazione del verde urbano ed extraurbano

0,33

Investimento 3.2: Digitalizzazione dei parchi nazionali

0,10

Investimento 3.4: Bonifica dei siti orfani 0,50

Riforma 3.1: Adozione di programmi nazionali di controllo dell'inquinamento atmosferico

Investimento 3.5: Ripristino e tutela dei fondali e degli habitat marini

Investimento 3.3: Rinaturazione dell'area del Po

dell'approvvigionamento idrico

Garantire la gestione sostenibile delle risorse idriche lungo l'intero ciclo e il miglioramento della qualità ambientale delle acque interne e marittime Investimento 4.1: Investimenti in infrastrutture idriche primarie per la sicurezza

Investimento 4.2: Fiduzione delle perdite nelle reti di distribuzione dell'acqua, compresa la digitalizzazione e il monitoraggio delle reti

Investimento 4.3: Investimenti nella resilienza dell'agrosistema irriguo per una migliore gestione delle risorse idriche

Investimento 4.4: Investimenti in fognatura e depurazione

Riforma 4.1: Semplificazione normativa e rafforzamento della governance per la realizzazione degli investimenti nelle infrastrutture di approvvigionamento idrico Riforma 4.2: Misure per garantire la piena capacità gestionale per i servizi idrici integrati

Comunicazione > Notizie > Linee guida per la definizione del PNRR, via libera del Parlamento

Linee guida per la definizione del PNRR, via libera del Parlamento

13 ottobre 2020

Il 13 ottobre 2020, la Camera e il Senato hanno approvato le risoluzioni delle Commissioni sulla proposta di Linee guida per la definizione del Piano nazionale di ripresa e resilienza.

Nel corso della discussione al Senato, il Ministro per gli Affari Europei, Vincenzo Amendola, ha

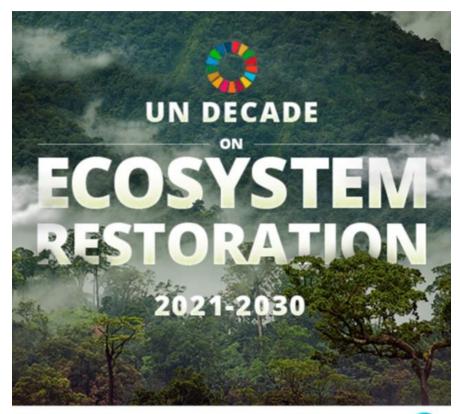
Per saperne di più

Recovery, Amendola: "Con voto Parlamento più forte, insieme per interesse di tutti"

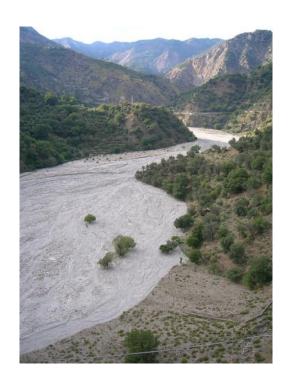
🖾 Piano nazionale di ripresa e resilienza

Si propone di prevedere un piano nazionale di rinaturazione e manutenzione di fiumi, laghi, lagune e zone umide, da attuare nel triennio 2021-2023, avente come finalità la corretta applicazione delle direttive note come Direttiva « Quadro sulle acque », direttiva « Alluvioni », direttiva « Habitat » e direttiva « Uccelli », per il raggiungimento dell'obiettivo di qualità ecologica e superamento delle procedure EU Pilot e di infrazione dalla Commissione europea, attraverso la promozione del ricorso alle infrastrutture verdi e il ripristino, la tutela e il mantenimento di boschi ripariali.

Si propone di prevedere specifici fondi per l'attuazione delle misure necessarie al raggiungimento dello stato buono in tutti i corpi idrici, come richiesto dalla direttiva 2000/60/CE, del Parlamento europeo e del Consiglio, del 23 ottobre 2000, (direttiva quadro sulle acque) e coerentemente con la pianificazione di bacino, con particolare riferimento alle misure di rinaturazione e di riduzione dell'alterazione idromorfologica, fondamentali per il raggiungimento di tali obiettivi, ma che ad oggi non risultano supportate da alcuna linea di finanziamento.

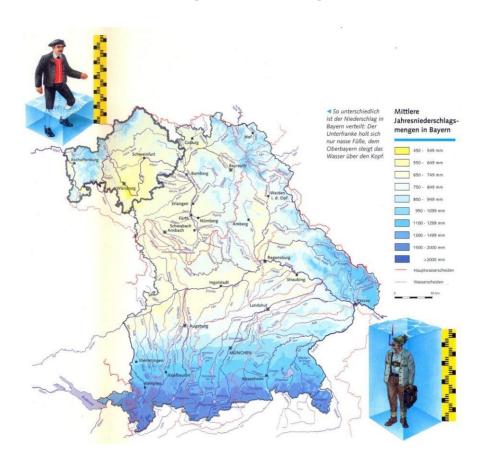

Dovranno essere attivati anche specifici investimenti e misure volte a favorire la realizzazione di « interventi integrati », che garantiscano contestualmente la riduzione del rischio idrogeologico, il miglioramento dello stato ecologico dei corsi d'acqua e la tutela degli ecosistemi e della biodiversità, e che agli stessi sia destinato fino al 40 per cento dei fondi per la riduzione del dissesto idrogeologico e sismico, valutando anche il ripristino dell'unità di missione ad esso dedicata.

E il principio DNSH (non arrecare danni significativi)?

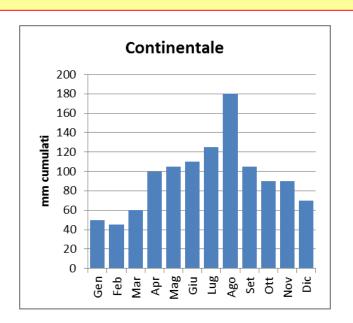


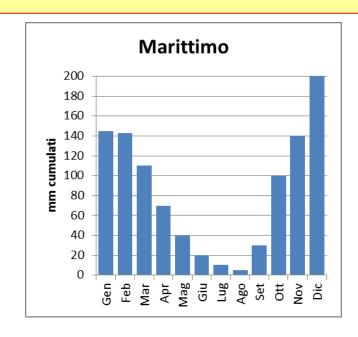
Il REGIME IDROLOGICO: l'insieme delle caratteristiche quantitative e dell'andamento nel tempo delle portate in alveo, ovvero:

QUANTA ACQUA SCORRE IN ALVEO E QUANDO


Quali fattori influenzano il regime idrologico?

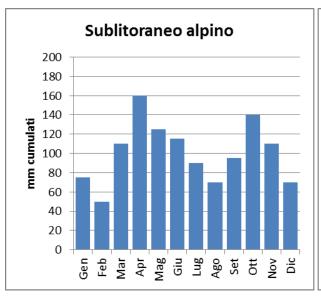
1. Regime pluviometrico

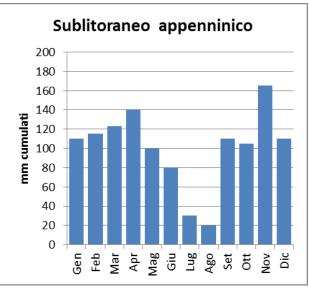

Thoso by & Maruzzo


Regimi pluviometrici italiani

CONTINENTALE (alpino):
massimo di precipitazione in estate
minimo in inverno
limitata escursione tra min e max

MARITTIMO: massimo di precipitazione in inverno minimo in estate


elevata escursione tra min e max



Regimi pluviometrici italiani

In Italia perlopiù REGIMI INTERMEDI: due massimi (autunno e primavera) due minimi (estate e inverno)

Quali fattori influenzano il regime idrologico?

2. Permeabilità del bacino

Quali fattori influenzano il regime idrologico?

3. Fonte di alimentazione principale (glaciale, nivale, pluviale, falda)

(2+3) = componente di Q che viene accumulata e rilasciata in alveo in tempi più lunghi rispetto a quelli delle precipitazioni

Quali regimi idrologici (naturali)?

- % rilevante del bacino occupato da ghiacciai
- -> regime GLACIALE:
- Q concentrata nel periodo di scioglimento ed estremamente ridotta negli altri periodi
- Ridotta variabilità tra un anno e l'altro
- Oscillazione giornaliera

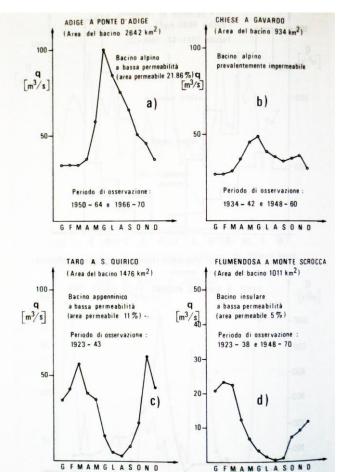
Bacino perlopiù montano ma in assenza di ghiacciai

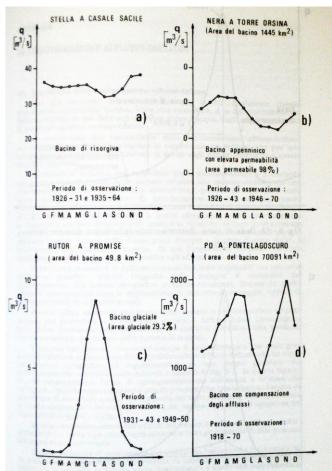
- -> regime NIVALE:
- Q concentrata nel periodo di scioglimento, brusco calo quando tutto il bacino di alimentazione si è sciolto
- Inizio scioglimento generalmente anticipato rispetto a glaciale

Quali regimi idrologici (naturali)?

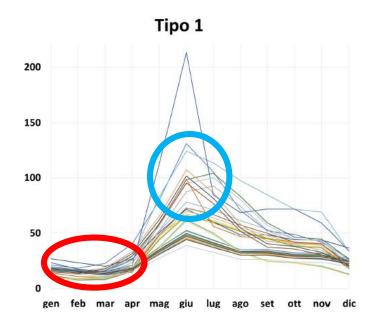
- Alimentazione perlopiù connessa alle piogge:
- -> regime PLUVIALE:
- Se bacino poco permeabile -> regime che segue quello pluviometrico
- Se bacino molto permeabile -> regime che si può discostare molto da quello pluviometrico

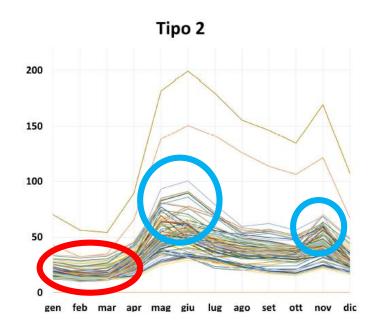
Caso estremo


- -> regime di RISORGIVA:
- Q molto costante tutto l'anno


Varietà di regimi intermedi: NIVO-GLACIALI, NIVO-PLUVIALI, ecc... e più aumentano ordine e dimensione del corso d'acqua più si diversifica (si sommano i regimi elementari degli affluenti)

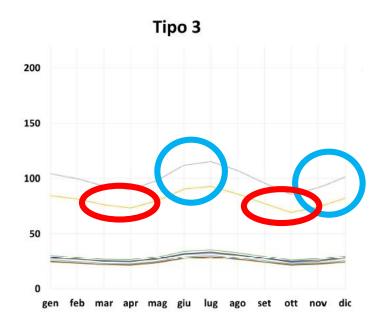
Quali regimi idrologici?


Bacino: TIMAVO SNORE TIMAVO & S. GIOVANNI DI DUENO (©.00 m. s.m.)									Giorno	Bacino: ISONZO SIREORE: VIFACCO & RUBBIA (38.00 m s.m.)													
G F	M	Α	М	G	L	Α	S	0	N	D	Ozesz.	G	F	M	A	м	G	L	Α	s	0	N	D
90 110 97 110 102 100 110 92 96 93 84 82 65 78 53 42 53 42 53 45 31 45 32 25 34 72	68 80 90 84 85 70 63 50 42 33 48	65 87 15 78 42 62 42 63 72 69 67	75 75 80 74 90 100 90 35 38 40 40 30 70 76	86 96 51 40 25 32 35 45 65 78	65 49 50 49 47 45 50 52 66 70 80		78 71 72 75 75 77 76 94 96 108	106 92 85 86 85 89 106 89 88 118 132	86 75 80 82 66 106 110 115 120 125	86 84 57 82 70 60 50 114 128 102 98	1 2 3 4 5 6 7 8 9	-8 -8 -10 -10 -72 -72 14 14 14 16 16	10 5 -6 -8 -6 -3 6 12 42 64 60	12 12 12 12 10 10 4 4 6 6	12 21 23 14 54 96 113 182 153 121	29 27 27 21 16 16 14 14 14 12 12	4 6 6 .10 .10 .10 .10 .10	12 6 4 10 8 8 8 8	6 4 4 4 2 5 5 5 5 9 9 9 9 9	-12 -12 -14 -14 -14 -12 -14 -12 -12 -12	252 183 66 46 32 32 38 60 60 359 105	5 5 5 4 4 16 360 360 165 80 53	
36 80 50 117 62 115 123 142 104 142 104 142 106 80 116 80 116 80 70 70 70 70 51 80 53 65	48 40 62 48 87 87 95 164 80 63 50 40 40 40 40 40	67 68 75 78 81 77 50 61 79 102 82 83 85 46 30	30 70 76 15 15 38 82 85 70 47 80 82 80 75 70 60 58 40	78 80 85 92 93 70 70 75 90 36 41 40 57 75	98 70 92 96 90 88 82 75 84 65 86 80 87		123 104 115 85 80 86 83 93 96 120 130 128 127 130 123	135 120 142 146 136 130 102 102 97 96 102 106 108 48 118	110 115 115 112 78 73 70 65 100 76 139 110 88 112 118	100 84 72 70 48 55 60 72 98 126 135 140 155 138 140	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	16 16 18 20 42 46 52 66 82 98 78 60 56 46 38	60 145 132 74 52 46 40 32 32 28 28 26 20 16 16	1144444444444444444	153 121 90 52 41 22 22 18 18 18 16 14 14 14 12 12	12 8 8 10 12 12 12 12 12 10 8 8	8 8 4 4 4 4 10 8 10 114 88 82	8 8 8 6 6 6 7 7 4 4 4 6 6 6 4 6 6 6 15 18	-8 -10 -10 -10 -10 -12 -12 -12 -12	-12 -12 -12 -12 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	75 70 44 30 25 15 15 15 16 16 16 16 16	285 165 80 53 35 24 22 16 16 16 14 12 12 8 8 8 8 4 -2 -2 -4 -4 -4 -6	14 42 13 100 96
5.5 70 58 74 76 80 48 70 102	40 36 40 50 45	50 68 82	50	70 60 90 94 71	110 110 90 87 83	:	123 126 140 115 120	118 119 118 100 92 88	118 102 90 108 95	140 109 80 72 57	26 27 28 29 30 31 Medie	28 20 16 12 10	16 16 16	-10 -8 -6 10 12 -4 -6	12 22 22 28 28 28	10 10 8 -3 -4 -4	82 64 48 26 18 14	15 18 14 14 12 12 8 6	-12 -10 -8 -10 -12 -12	259 152 120 46 58	5 -2 -3 -5 -5	4 4 4 9 9	1
		N	fedia i	annua:											Ň	Acdia a	ennus:	2	1				
Bacino: ISONZO Bacino: BONZO (50.63 m s.m.)								m)	Giorse	Statio	ne 197	W70 -	Ba	acino	ISC	ONZO)	- (33.00	m	s.m.		
G F	М	Λ	М	G	L	Α	S	0	N	D	Onea.	G	P	М	A	м	G	1.	Α	s	0	N	D
38 40 30 32 22 35 35 30 32 24 30 32 24 30 33 30 40 104 20 33 31 40 104 20 35 31 40 31 40 3	10 25 25 25 25 38 47 99 30 30 36 25 25 25 25 25 25 25 25 25 25 25 25 25	54 54 56 49 47 43 52 48 86 94 70 220 86 55 50 57 53 53 53 53 53 53 53 53 53 53 53 53 53	51 57 57 58 63 72 67 69 72 27 55 47 49 49 62 45 50 47 49 49 49 49 49 49 49 49 49 49 49 49 49	43 49 48 41 99 48 99 99 85 69 99 85 69 67 67 72 46 69 55 46 45 47 188 69 55 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	46 44 44 35 2 52 32 38 40 18 52 72 22 96 75 38 45 55 66 55 36 57 38	29 58 53 34 55 34 42 43 47 30 30 30 31 22 22 27 27 31 32 32 33 33	30 48 28 28 29 25 20 20 20 20 15 13 3 9 9 45 45 39 45 63 63 63 63 63 63 129 120 120 121 121 121 121 121 121 121 121	250 170 110 95 86 73 80 61 60 58 86 62 62 62 125 198 87 70 198 87 70 198 85 87 70 198 85 87 70 198 86 87 70 80 86 86 86 86 86 86 86 86 86 86 86 86 86	30 42 40 23 32 33 315 50 69 61 48 46 46 47 43 44 41 30 34 44 41 37 37 50 37 50 37 50 50 48 48 48 48 49 40 40 40 40 40 40 40 40 40 40 40 40 40	35 8 8 26 33 36 43 22 22 30 58 44 43 35 30 42 22 20 22 20 22 20 22 20 20 20 20 20 20	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 22 24 25 26 27 28	365 50 40 54 40 14 34 18 15 4 6 8 4 4 6 6 50 76 70 30 58 38 70 70 30 58 38 70 28 32	48 46 32 32 42 40 40 36 40 36 66 168 98 70 62 54 48 40 48 40 44 44 44	12 30 22 20 32 32 34 60 20 20 20 20 24 26 18 18 19 12 42 42 42 43 48 48 48 48 48 48 48 48 48 48 48 48 48	66 30 74 74 66 68 60 329 180 1110 88 70 70 70 68 88 66 66 66 66 66 66 66 66 66 66 66	70 70 86 86 89 82 74 44 66 68 69 58 58 54 54 59 64 70 66 66 62 58 56 69 59 54 58 56 69 59 54 58	56 40 56 56 54 58 102 133 80 58 30 54 30 54 30 54 30 76 110 76 110 76 40 76 40 76 40 76 76 76 76 76 76 76 76 76 76 76 76 76	34 32 30 36 30 38 40 38 40 90 70 70 70 70 70 70 70 70 70 70 70 70 70	48 54 55 56 20 52 54 42 40 48 38 15 -15 8 10 0 0 0 -34 -37 -36 -36 0	-15 20 -26 6 -8 -10 -40 -47 -44 -49 -52 -59 -46 0 18 56 65 80 93 238 218 187 77	355 138 96 92 70 64 62 55 55 70 144 140 110 98 80 62 64 65 65 66 66 66 66 66 66 66 66 66 66 66	56 60 52 64 42 176 338 140 188 86 66 53 53 53 50 50 50 50 46 46 46 46 46 46 46 46 46 46 46 46 46	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

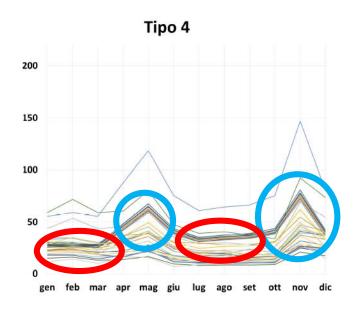


Da Moisello, 1985

I regimi idrologici considerati nell'ambito della definizione del DE in Lombardia

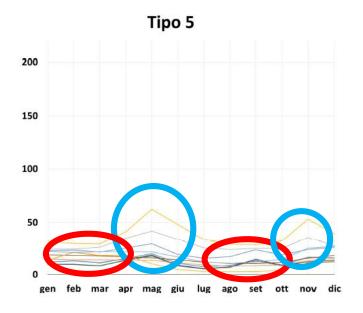


Tipo 1: Nivo-glaciale

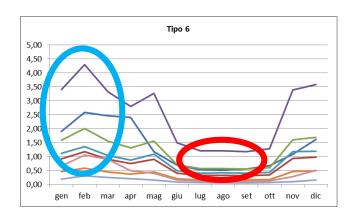


Tipo 2: Nivo-pluviale

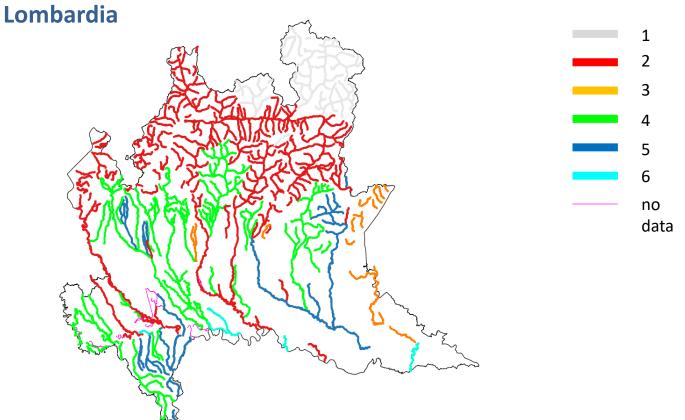
I regimi idrologici considerati nell'ambito della definizione del DE in Lombardia



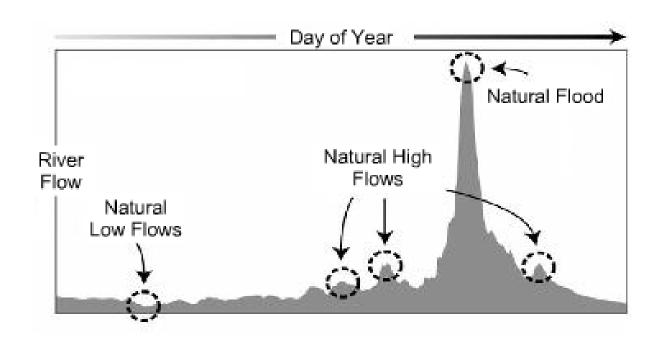
Tipo 3: Pluviale


Tipo 4: Pluvio-nivale autunno

I regimi idrologici considerati nell'ambito della definizione del DE in Lombardia


Tipo 5: Pluvio-nivale primavera

TIPO 6 (Secchia e CI area Po)


Tipo 6: Pluviale invernale

I regimi idrologici considerati nell'ambito della definizione del DE in

Regime idrologico e DE: solo Qmin?

L'approccio IHA (Indicators of Hydrologic Alteration, Richter et al., 1996)

5 diversi aspetti del regime (33 indicatori):

- portate medie mensili
- intensità e durata delle condizioni idrologiche estreme annuali
- data delle condizioni idrologiche estreme
- frequenza e durata delle pulsazioni alte e basse di portata
- tasso e frequenza dei cambi di condizioni idrologiche

Indicators of Hydrologic Alteration

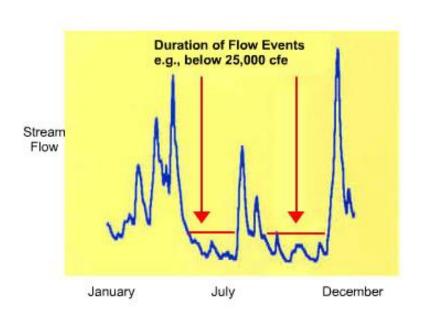
Version 7.1

User's Manual

Protecting nature. Preserving life.™

with rPurview LLC - Ted Rybicki Totten Software Design Smythe Scientific Software

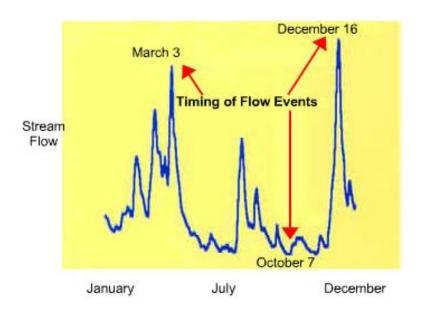
April 2009


1. portate medie mensili (12 indicatori)

Influenzano ad es.:

- disponibilità media di habitat per gli organismi acquatici,
- temperatura, ossigenazione e altri parametri fisico-chimici dell'acqua,
- umidità del suolo/livello della superficie freatica in relazione ad aree umide o alla zona radicale della vegetazione riparia,
- disponibilità idrica per animali terrestri

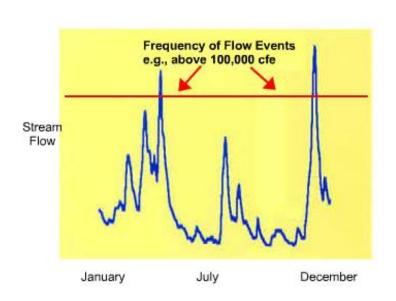
2. durata e intensità delle condizioni idrologiche estreme annuali (12 indicatori: 1-day, 3-day, 7-day, 30-day, 90-day min; 1-day, 3-day, 7-day, 30-day, 90-day max; zero days, base flow)



Influenzano ad es.

- il livello di stress connesso a fenomeni estremi, il loro eventuale accumulo e se determinate fasi vitali possono essere portate a termine o meno
- la competizione tra specie più o meno tolleranti,
- gli scambi di materia organica alveopianura inondabile
- la colonizzazione da parte della vegetazione
- la morfologia dell'alveo (Q formative)

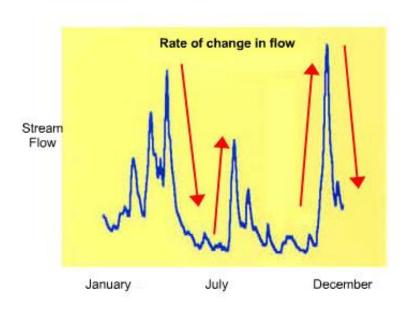
3. data delle condizioni idrologiche estreme (2 indicatori: data Q max 1 giorno, data Qmin 1 giorno)



Determinano ad es.:

- la compatibilità del regime con i cicli vitali di specifici organismi
- stimolo alla migrazione per la fauna ittica
- l'accessibilità a determinati habitat (es. riproduttivi, trofici, ecc.)...

4. frequenza e durata delle pulsazioni alte e basse di portata (4 indicatori: numero e durata media delle pulsazioni alte e basse)



Influenzano ad es.:

- frequenza e durata dello stress idrico e/o connesso all'anaerobiosi per la vegetazione
- accessibilità di habitat nelle piane inondabili
- scambi di nutrienti tra fiume e piana
- dinamica del trasporto solido e granulometria dell'alveo
- capacità di colonizzazione delle barre da parte della vegetazione

5. tasso e frequenza dei cambi di condizioni idrologiche (3 indicatori: velocità medie di aumento e diminuzione Q, numero di inversioni di tendenza Q)

influenzano ad es.:

- stress idrico per la vegetazione
- intrappolamento di organismi nella piana o su isole e barre

Da DMV a Deflusso Ecologico

Decreto n. 30/STA del 13.02.2017 (Linee Guida per l'aggiornamento dei metodi di determinazione del deflusso minimo vitale al fine di garantire il mantenimento nei corsi d'acqua del deflusso ecologico a sostegno del raggiungimento degli obiettivi di qualità ambientale dei corpi idrici definiti ai sensi della Direttiva 2000/60/CE ...)

Il Deflusso Ecologico

Metodologie basate su modelli teorici, ad ampia scala (metodologie regionalizzate)

Metodologie calibrate sulle sezioni fluviali di interesse e sulle comunità biologiche presenti (metodologie sito-specifiche)

Formula Regionalizzata del Distretto Idrografico

Misure di Conservazione Siti Natura 2000

Sperimentazioni

Condizioni Ambientali Prescrizioni in sede di VIA

Il Deflusso Ecologico – formula regionalizzata

 $DE = k*q_{meda}*S*M*A*Z(max N, F, Q)*T$

Componente Idrologica

PTUA REGIONE LOMBARDIA:

k = 0,1 per tutti i corsi d'acqua della Regione

Componente idrologica = 10% della portata media naturale annua

Il Deflusso Ecologico – formula regionalizzata

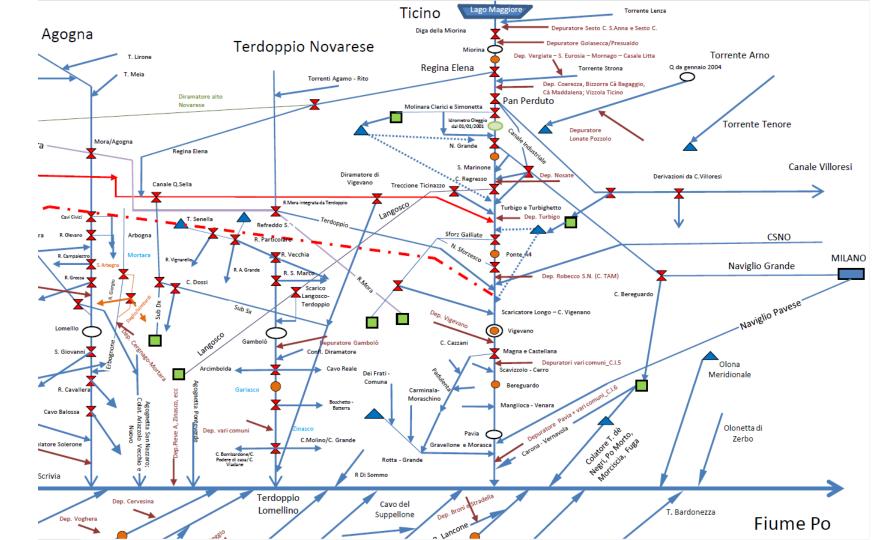
$$DE = k*q_{meda}*S*M*A*Z(max N, F, Q)*T$$

M – Fattore morfologico (0,7 < M < 1,3)

A – Fattore di interazione con le acque sotterranee (0,5 < A < 1,5)

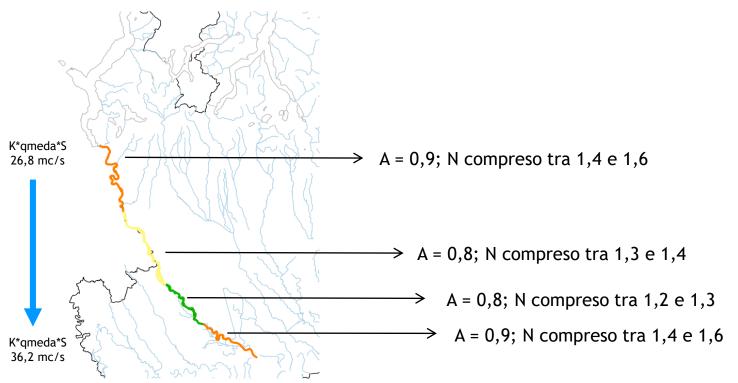
Z – Fattore con valore massimo tra:

N – Fattore naturalistico (N ≥ 1)

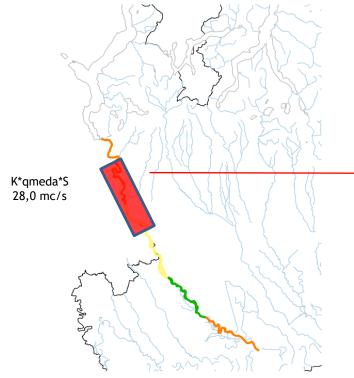

Q – Fattore di diluizione dei carichi inquinanti ($Q \ge 1$)

F – Fattore di fruizione ($F \ge 1$)

T – Fattore di modulazione nel tempo:


Modulazione «idrologica» (andamento naturale dei deflussi)

Modulazione «ittiologica» (necessità della fauna ittica)


Il Deflusso Ecologico del Ticino

$DE = k*q_{meda}*S*M*A*Z(max N, F, Q)*T$

Il Deflusso Ecologico del Ticino

$DE = k*q_{meda}*S*M*A*Z(max N, F, Q)*T$

Sperimentazione - valori DMV bloccati

	Valore mensile (m³/s)												
Sezioni di	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Off	Nov	Dic	
derivazione													
Diga	29,3	29,3	29,3	31,3	31,3	24,3	24,3	24,3	38,3	36,3	36,3	36,3	
Panperduto (*)													
Filarola Rogge	24	24	24	24	24	17	17	17	31	31	31	31	
Novaresi													
Filarola Naviglio	24	24	24	24	24	17	17	17	31	31	31	31	
Langosco (**)													

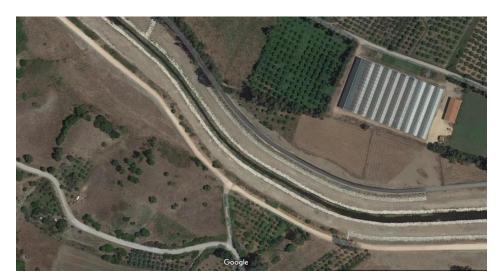
^(*) Valori di portata intesi come sommatoria del DMV e delle competenze di derivazione delle Rogge Novaresi

^(**) La parte prevalente delle portate indicate deve essere assicurata nel ramo principale del F. Ticino e la parte rimanente nel ramo Treccione.

Il Deflusso Ecologico

Valori Regionalizzati in vigore nei tratti non soggetti a Sperimentazione dal 2024

Ticino: Corpi Idrici INTERREGIONALI


Ente Parco: possibilità di applicare un ulteriore fattore («N habitat») in presenza di habitat RN2000 specifici. Il fattore è modulato tra 1,4 e 2. (...Il Parco valuta se il deflusso serve di più in alveo o nel reticolo irriguo)

Adozione delle Misure di Conservazione Siti Natura 2000

Ente Parco: possibilità di chiedere N >2 con studi di dettaglio basati su metodologie sito-specifiche

Ricostruzione post-alluvione

Rio Sologo

Nel post-alluvione ricostruire in emergenza tutto come prima è un'enorme occasione mancata per **restituire spazio al fiume**

Riconnessione canali laterali (per ridurre le sollecitazioni sulle opere di difesa + riconnettere sorgenti di sedimenti)

Abbassamento pennello di Gussola, 2023 (intervento pilota replicato nel progetto Rinaturazione Po PNRR)

